RSS

ബിഗ്-ബാങ് – 2

12 ജുലാ

ന്യൂക്ലിയര്‍ റിയാക്ഷന്‍ നടന്നുകൊണ്ടിരുന്ന ആദ്യകാല പ്രപഞ്ചം, ഇന്നത്തെ പ്രപഞ്ചത്തിലേക്കു് വികസിച്ചതിന്റെ സാങ്കേതികങ്ങള്‍ മനസ്സിലാക്കാന്‍ മാറ്റര്‍, റേഡിയേഷന്‍ എന്നിവയെസംബന്ധിച്ചു് ചില അടിസ്ഥാന വസ്തുതകള്‍ അറിഞ്ഞിരിക്കണം. അവ തമ്മിലുള്ള പരസ്പരപ്രവര്‍ത്തനങ്ങള്‍ പരിശോധിക്കാന്‍ അതാവശ്യമാണു്.

ആദ്യകാല ആറ്റം മോഡല്‍

ഭാരമേറിയ ഒരു ന്യൂക്ലിയസും അതിനെ ചുറ്റി “കറങ്ങുന്ന”, ഭാരം താരതമ്യേന വളരെ കുറഞ്ഞ എലക്ട്രോണുകളും അടങ്ങുന്നതായിരുന്നു ബ്രിട്ടീഷ്‌ ഫിസിസിസ്റ്റ്‌ ഏണെസ്റ്റ് റതര്‍ഫര്‍ഡിന്റെ ആറ്റം മോഡല്‍. സൂര്യനും അതിനെ ചുറ്റുന്ന ഗ്രഹങ്ങളുമായുള്ള അനാളജി മൂലം പൊതുവേ പ്രിയപ്പെട്ടതായിരുന്ന ഈ ആറ്റം മോഡലിനു് പക്ഷേ ചില പ്രശ്നങ്ങളുണ്ടു്. ത്വരിതപ്പെടുത്തപ്പെടുന്ന ഒരു എലക്ട്രിക്‌ ചാര്‍ജ്‌ അതിന്റെ എനര്‍ജിക്കു് അനുസൃതമായ തരംഗദൈര്‍ഘ്യമുള്ള എലെക്ട്രോമാഗ്നെറ്റിക് റേഡിയേഷന്‍ പുറപ്പെടുവിക്കും. ന്യൂക്ലിയസിന്റെ ചാര്‍ജ്‌ പോസിറ്റിവ്‌ ആയതിനാല്‍, നെഗറ്റിവ്‌ ചാര്‍ജുള്ള എലക്ട്രോണ്‍ ന്യൂക്ലിയസിലേക്കു് “വീഴാതിരിക്കാന്‍” (വീഴുമ്പോഴും റേഡിയേഷന്‍ ഉണ്ടാവും) ഒരു എതിര്‍ശക്തി (centrifugal force) ഉണ്ടായേ പറ്റൂ. അതിനു് പരിഹാരമായാണു് എലക്ട്രോണുകള്‍ ന്യൂക്ലിയസിനെ ചുറ്റി കറങ്ങുകയാണെന്നു് സങ്കല്‍പിക്കപ്പെട്ടതു്. പക്ഷേ, നേര്‍രേഖയില്‍ സ്ഥിരമായ വേഗതയില്‍ സഞ്ചരിക്കുന്ന ഒരു വസ്തുവില്‍ നിന്നു് വ്യത്യസ്തമായി, വൃത്താകൃതിയിലുള്ള ഒരു പഥത്തില്‍ സ്ഥിരമായ വേഗതയില്‍ സഞ്ചരിക്കാന്‍ ഒരു വസ്തുവിനു് അക്സലറേഷന്‍ ആവശ്യമാണു്. വൃത്താകൃതിമൂലം ചലനദിശയില്‍ നിരന്തരം സംഭവിക്കുന്ന വ്യത്യാസമാണു് അതിനു് കാരണം. കയറില്‍ കെട്ടിയ ഒരു കല്ല് നല്ലപോലെ കറക്കിയശേഷം കൈവിട്ടാല്‍, അതു് തുടര്‍ന്നു് കറങ്ങുകയല്ല, കൈവിടുന്ന സമയത്തെ കല്ലിന്റെ വൃത്തത്തിലെ സ്ഥാനത്തിനു് ടാന്‍ജെന്‍ഷ്യലായി, നേര്‍രേഖയില്‍ യാത്ര തുടരുകയാവും ചെയ്യുക. ഭൂമിയുടെ ആകര്‍ഷണശക്തിയോ, മറ്റേതെങ്കിലും തരം ശക്തിയോ അതില്‍ പ്രവര്‍ത്തിക്കാതിരിക്കുന്നിടത്തോളം ആ യാത്ര സ്ഥിരമായി നേര്‍രേഖയില്‍ തന്നെ എന്നാളും തുടര്‍ന്നുകൊണ്ടിരിക്കും. (നേര്‍രേഖ, യാത്ര എവിടെവരെ തുടങ്ങിയ കാര്യങ്ങള്‍ പ്രപഞ്ചത്തെ പൊതുവായി വീക്ഷിക്കുമ്പോള്‍ പുതിയതായി നിര്‍വചിക്കപ്പെടണമെങ്കിലും.) ഐസക്‌ ന്യൂട്ടന്റെ മൂന്നു് ചലനനിയമങ്ങളില്‍ ഒന്നാമത്തേതു് പറയുന്നതും അതുതന്നെ: Every body continues to be in a state of rest or of uniform motion unless it is compelled to change its state of rest or of motion by an external force. ചുരുക്കത്തില്‍, ന്യൂക്ലിയസിനെ ചുറ്റുമ്പോള്‍ എലക്ട്രോണ്‍ അക്സലറേഷന്‍ അനുഭവിക്കുന്നുണ്ടെന്നതിനാല്‍, അതു് എനര്‍ജി റേഡിയേറ്റ്‌ ചെയ്യും. അതുവഴി അതിന്റെ എനര്‍ജി കുറയും. തന്മൂലം, ഭ്രമണപഥത്തിന്റെ വ്യാസം ചുരുങ്ങിവരും. അവസാനം എപ്പോഴെങ്കിലും അതു് ന്യൂക്ലിയസിലേക്കു് വീഴേണ്ടിവരും. പക്ഷേ അങ്ങനെ ഒന്നും സംഭവിക്കുന്നില്ലാത്തതുകൊണ്ടു് റതര്‍ഫര്‍ഡിന്റെ ആറ്റം മോഡല്‍ ശാസ്ത്രജ്ഞര്‍ക്കു് തൃപ്തികരമല്ലാതെ വന്നു. എലക്ട്രോണ്‍ ന്യൂക്ലിയസിനെ ചുറ്റണമെന്നില്ല. അനുയോജ്യമായ ഒരു എനര്‍ജി അവസ്ഥയില്‍ സ്ഥിരമായി നിന്നാലും പ്രശ്നമൊന്നുമില്ല. ആ എനര്‍ജി അവസ്ഥയെ പ്രശ്നപരിഹാരത്തിനു് അനുയോജ്യമായ വിധത്തില്‍ വിശദീകരിക്കാന്‍ കഴിയണമെന്നുമാത്രം. ഈ പ്രശ്നം തൃപ്തികരമായി പരിഹരിക്കാന്‍ ശാസ്ത്രത്തിനു് കഴിഞ്ഞതു് ക്വാണ്ടം ഫിസിക്സിനു് ശേഷമാണു്. ആറ്റം എന്നാല്‍ നിരനിരയായി ചേര്‍ത്തു് നിര്‍ത്തിയാല്‍ ഒരു സെന്റീമീറ്റര്‍ സ്ഥലപരിധിയില്‍ ഏകദേശം അഞ്ചു് കോടി എണ്ണങ്ങളെ ഒതുക്കാന്‍ മാത്രം ചെറുതായ ഒരു “വസ്തു” ആണു്. അതുപോലെ, പോസിറ്റിവ്‌ ചാര്‍ജുള്ള പ്രോട്ടോണുകള്‍ പരസ്പരം വികര്‍ഷിക്കുന്നതിനു് പകരം, എന്തുകൊണ്ടു് ന്യൂക്ലിയസില്‍ ഒരുമിച്ചു് ചേര്‍ന്നിരിക്കുന്നു? അതിനുകാരണം, സ്റ്റ്റോങ് അറ്റോമിക് ഫോഴ്സാണു്. പക്ഷേ അതിലേക്കു് ഇവിടെ കടക്കുന്നില്ല.

മാറ്ററും, റേഡിയേഷനും

ഇരുപതാം നൂറ്റാണ്ടിന്റെ ആരംഭഘട്ടത്തില്‍ ശാസ്ത്രലോകത്തില്‍ പൊതുവേ നിലനിന്നിരുന്ന ഡ്യുവലിസ്റ്റിക് ചിന്താഗതി ദ്രവ്യത്തെ കണികകളായും, എല്ലാത്തരം റേഡിയേഷനേയും തരംഗങ്ങളായും മനസ്സിലാക്കുന്നതായിരുന്നു. അതുകൊണ്ടുതന്നെ, പ്രപഞ്ചത്തെ മനസ്സിലാക്കാന്‍ ഇവ രണ്ടും തമ്മിലുള്ള പരസ്പരപ്രവര്‍ത്തനം പഠിക്കുക എന്ന മാര്‍ഗ്ഗം ശാസ്ത്രജ്ഞര്‍ സ്വീകരിച്ചു. മാറ്ററും റേഡിയേഷനും തമ്മിലുള്ള ഇന്റെറാക്ഷന്‍ ഏറ്റവും എളുപ്പം മനസ്സിലാക്കാന്‍ ചുട്ടുപഴുത്ത ഇരുമ്പിനെ ശ്രദ്ധിച്ചാല്‍ മതി. ചൂടു് എത്ര കൂടുതലോ, അത്രയും കൂടുതല്‍ എനര്‍ജി അതു് റേഡിയേറ്റ്‌ ചെയ്യും. കൂടിയ എനര്‍ജി എന്നാല്‍ കുറഞ്ഞ തരംഗദൈര്‍ഘ്യം, അഥവാ കൂടിയ ഫ്രീക്വന്‍സി; കുറഞ്ഞ എനര്‍ജി എന്നാല്‍ കൂടിയ തരംഗദൈര്‍ഘ്യം, അഥവാ കുറഞ്ഞ ഫ്രീക്വന്‍സി. ഫ്രീക്വന്‍സി തലതിരിച്ചിടുന്നതാണു് തരംഗദൈര്‍ഘ്യം! ചൂടു് കൂടുന്തോറും ആദ്യം ചുവന്നും, പിന്നെ വെളുത്തും “പഴുക്കുന്ന” ഇരുമ്പു് നമുക്കു് കാണാന്‍ കഴിയുന്ന ഫ്രീക്വന്‍സിയിലുള്ള റേഡിയേഷന്‍ പുറപ്പെടുവിക്കുകയാണു് ചെയ്യുന്നതു്. ഇരുമ്പില്‍ പ്രകാശം കാണാനില്ല, പക്ഷേ ചൂടുണ്ടുതാനും എന്നതിനര്‍ത്ഥം, അപ്പോള്‍ പുറപ്പെടുവിക്കുന്ന റേഡിയേഷന്‍ നമുക്കു് കാണാന്‍ കഴിയാത്ത (ചുവപ്പിനു് താഴെയുള്ള) തരംഗദൈര്‍ഘ്യത്തിലുള്ളവയാണു് എന്നുമാത്രമാണു്.

ക്വാണ്ടം തിയറിയുടെ ജന്മം

ചൂടു് കൂടുന്നതിനനുസരിച്ചു് റേഡിയേറ്റ്‌ ചെയ്യപ്പെടുന്ന തരംഗങ്ങളുടെ തരംഗദൈര്‍ഘ്യം കുറയുകയും, എനര്‍ജി കൂടുകയും ചെയ്തുകൊണ്ടിരിക്കുമെന്നു് നമ്മള്‍ കണ്ടു. ഇത്തരം പഠനങ്ങള്‍ക്കു് തിയൊറെറ്റിക്കല്‍ ഫിസിസിസ്റ്റ്സ് ഒരു ഐഡിയലൈസ്ഡ് ബ്ലാക്ക്ബോഡി സങ്കല്‍പ്പിക്കാറുണ്ടു്. ആ പേരിനു് വലിയ പ്രാധാന്യം നല്‍കേണ്ട കാര്യമില്ല. അകവശം കറുപ്പുതേച്ച ഒരു പെട്ടിയുടെയോ, രണ്ടുവശവും അടച്ച ഒരു കുഴലിന്റെയോ, പാര്‍ശ്വഭാഗത്തു് ഒരു ചെറിയ തുളയിട്ടാല്‍ ഒരു “ബ്ലാക്ക്ബോഡി” ആയി. അതില്‍ പതിക്കുന്ന റേഡിയേഷന്‍സ്‌ പൂര്‍ണ്ണമായി ആഗിരണം ചെയ്യാന്‍ കഴിവുള്ള ഒരു പ്രതലം ആണു് അതുകൊണ്ടു് ഉദ്ദേശിക്കുന്നതു്. ആ ദ്വാരം വഴി ഒരു റേഡിയേഷന്‍ (പ്രകാശം) അകത്തെത്തിയാല്‍, അതു് പൂര്‍ണ്ണമായി ആഗിരണം ചെയ്യപ്പെടുന്നതുവരെ അകഭിത്തിയില്‍ തട്ടി പ്രതിഫലിച്ചുകൊണ്ടിരിക്കും. അതുപോലെതന്നെ, ബ്ലാക്ക് ബോഡി ചൂടാക്കുമ്പോള്‍ ദ്വാരത്തിലൂടെ പുറത്തുവരുന്ന റേഡിയേഷന്റെ ഇന്റെന്‍സിറ്റി പഠനവിധേയമാക്കാം. ആ ഇന്റെന്‍സിറ്റി എന്നതു് ബ്ലാക്ക് ബോഡിയുടെ ടെമ്പറേച്ചറില്‍ മാത്രം അധിഷ്ഠിതമാണു്. ഇവിടെ പഠനവിധേയമാവുന്നതു് ധാരാളം തരംഗദൈര്‍ഘ്യങ്ങള്‍ ആണെന്നതിനാല്‍, ദ്രവ്യങ്ങളുടെ ലോകത്തിലെ സ്റ്റാറ്റിസ്റ്റിക്കല്‍ മെക്കാനിക്സ്‌, തരംഗങ്ങളുടെ ലോകമായ എലക്ട്രോമാഗ്നെറ്റിസവുമായി ബന്ധപ്പെടുത്തേണ്ടിവരുന്നു. ഫിസിക്സിലെ രണ്ടു് ക്ലാസിക്കല്‍ തിയറികളാണിവ. ഈ തത്വങ്ങളുടെ വെളിച്ചത്തില്‍, ചൂടാക്കപ്പെടുന്ന ബ്ലാക്ക് ബോഡി അള്‍ട്രാവയലറ്റും അതിനപ്പുറവും എത്തുന്ന ഉന്നതഫ്രീക്വന്‍സികളുള്ള “അനന്തമായ” എനര്‍ജി റേഡിയേറ്റ്‌ ചെയ്യണം. മറ്റുവിധത്തില്‍ പറഞ്ഞാല്‍, ബ്ലാക്ക്ബോഡി റേഡിയേഷന്റെ മൊത്തം എനര്‍ജി അനന്തമായിരിക്കണം! ഈ അവസ്ഥയെ ശാസ്ത്രജ്ഞര്‍ “അള്‍ട്രാവയലറ്റ് കറ്റാസ്റ്റ്രൊഫി” എന്നു് വിളിക്കുന്നു. പക്ഷേ ചൂടാവുന്ന പദാര്‍ത്ഥങ്ങള്‍ യഥാര്‍ത്ഥത്തില്‍ പുറപ്പെടുവിക്കുന്ന റേഡിയേഷന്‍ അള്‍ട്രാവയലറ്റ് കറ്റാസ്റ്റ്രൊഫി എന്നൊരു സ്വഭാവം പ്രദര്‍ശിപ്പിക്കുന്നില്ല. വളരെ കുറഞ്ഞ തരംഗദൈര്‍ഘ്യങ്ങളിലും, വളരെ കൂടിയ തരംഗദൈര്‍ഘ്യങ്ങളിലും എത്തുമ്പോള്‍ വളരെ കുറച്ചു് റേഡിയേഷന്‍ മാത്രമേ ഉണ്ടാവുന്നുള്ളു. അഥവാ, അവിടെവച്ചു് റേഡിയേഷന്‍ “മുറിഞ്ഞുപോകുന്നു”. ചെറിയ ഫ്രീക്വന്‍സികളിലെ റേഡിയേഷന്‍ സാമാന്യം തൃപ്തികരമായി വിശദീകരിക്കാന്‍ പറ്റിയ തത്വങ്ങള്‍ കണ്ടുപിടിക്കപ്പെട്ടിരുന്നു. അള്‍ട്രാവയലറ്റ് കറ്റാസ്റ്റ്രൊഫി എന്നിട്ടും ഒരു തലവേദനയായി തുടര്‍ന്നു. ചൂടുള്ള ബ്ലാക്ക് ബോഡിയില്‍നിന്നും മിക്കവാറും മുഴുവന്‍ എനര്‍ജിയും റേഡിയേറ്റ്‌ ചെയ്യപ്പെടുന്നതു് ഇടത്തരം തരംഗദൈര്‍ഘ്യങ്ങളില്‍, അഥവാ ഫ്രീക്വന്‍സികളില്‍ ആണു്. തത്വവും, അളവുകളും തമ്മിലുണ്ടായ ഈ വൈരുദ്ധ്യം യുക്തിസഹമായി പരിഹരിക്കപ്പെടാനുള്ള പരിശ്രമങ്ങളുടെ ഫലമാണു് ക്വാണ്ടം തിയറി.

ബ്ലാക്ക്ബോഡി റേഡിയേഷന്‍ സംബന്ധിച്ച പഠനങ്ങള്‍ ഏറ്റെടുത്തവരുടെ മുന്‍പന്തിയിലാണു് ജര്‍മ്മന്‍ ഫിസിസിസ്റ്റ്‌ മാക്സ് പ്ലാങ്ക്. മറ്റൊരു ജര്‍മ്മന്‍ ഫിസിസിസ്റ്റ്‌ വില്‍ഹെല്‍ം വീന്‍ മുന്നോട്ടു് വച്ച ചില തത്വങ്ങളുടെ അടിത്തറയില്‍ പ്ലാങ്ക്‌ നടത്തിയ ആദ്യകാല പഠനങ്ങള്‍ പ്രശ്നപരിഹാരത്തിനു് ഉതകുന്നതായിരുന്നില്ല. കഠിനാധ്വാനി ആയിരുന്നെങ്കിലും, ഒരു തികഞ്ഞ യാഥാസ്ഥിതികനായിരുന്ന പ്ലാങ്കിനു് സ്റ്റാറ്റിസ്റ്റിക്കല്‍ മെക്കാനിക്സിന്റെ പ്രധാന സൂത്രധാരന്‍ ആയിരുന്ന ഓസ്റ്റ്‌റിയന്‍ ഫിസിസിസ്റ്റ് ലുഡ്വിഗ് ബോള്‍ട്സ്മാന്റെ വിപ്ലവകരമായ ആശയങ്ങളോടു് പുച്ഛമായിരുന്നു. ആ ഗണിതം അത്ര പിടിയുമില്ലായിരുന്നു. തെര്‍മോഡൈനാമിക്സില്‍ ബോള്‍ട്സ്മാന്‍ അവതരിപ്പിച്ച എന്‍‌ട്രോപ്പിയുടെ സ്റ്റാറ്റിസ്റ്റിക്കല്‍ ഇന്റര്‍പ്രെറ്റേഷനുമായി പൊരുത്തപ്പെടാന്‍ പ്ലാങ്കിനു് മടിയായിരുന്നു. എന്‍‌ട്രോപ്പിക്കു് ഫിസിക്സില്‍ വളരെ പ്രധാനപ്പെട്ട ഒരു സ്ഥാനമുണ്ടു്. തെര്‍മോഡൈനാമിക്സിലെ നാലു് അടിസ്ഥാനനിയമങ്ങളില്‍ രണ്ടാമത്തേതു് അനുസരിച്ചു് പ്രകൃതിയിലെ പ്രക്രിയകള്‍ കൂടിവരുന്ന ക്രമഭംഗത്തിന്റെ ദിശയിലാണു് സംഭവിക്കുന്നതു്. മറ്റു് വാക്കുകളില്‍: പ്രകൃതിയില്‍ എന്‍‌ട്രോപ്പി സ്ഥിരമായി കൂടിക്കൊണ്ടിരിക്കുന്നു. പ്ലാങ്കിനു് ഇതു് ദൈവവാക്യമായിരുന്നു. ബോള്‍ട്സ്‌മാന്റെ അഭിപ്രായത്തില്‍ നിന്നും വിരുദ്ധമായി, പ്ലാങ്കിനെ സംബന്ധിച്ചു്, എന്‍‌ട്രോപ്പിയുമായി സ്റ്റാറ്റിസ്റ്റിക്സിനു് ബന്ധമൊന്നുമില്ല; എന്‍‌ട്രോപ്പി എന്നും, എപ്പോഴും കൂടിക്കൊണ്ടിരിക്കുന്നു, അത്രതന്നെ. എന്തായാലും, അവസാനം 1900-ല്‍ റേഡിയേഷന്‍ സംബന്ധമായി നിലവിലുണ്ടായിരുന്ന രണ്ട്‌ സമവാക്യങ്ങളെ ചില ഗണിതശാസ്ത്രസൂത്രങ്ങള്‍ ഉപയോഗിച്ചു് തന്റെ ക്വാണ്ടം ഇക്വേഷന്‍ രൂപപ്പെടുത്താന്‍ പ്ലാങ്കിനു് സ്റ്റാറ്റിസ്റ്റിക്കല്‍ തെര്‍മോഡൈനാമിക്സിലെ ബോള്‍ട്സ്‌മാന്റെ നിലപാടുകളെത്തന്നെ ആശ്രയിക്കേണ്ടിയും വന്നു. E = hν എന്ന പ്രസിദ്ധമായ ക്വാണ്ടം ഇക്വേഷനില്‍ പ്ലാങ്ക്‌ ഒരുവിധത്തില്‍ എത്തിച്ചേര്‍ന്നെങ്കിലും അതിന്റെ ശരിയായ അര്‍ത്ഥവ്യാപ്തി ശാസ്ത്രലോകത്തിനു് മനസ്സിലായതു് ആല്‍ബെര്‍ട്ട്‌ ഐന്‍സ്റ്റൈനു് ശേഷമാണു്.

പ്ലാങ്കിന്റെ തത്വത്തിന്റെ അടിസ്ഥാനത്തില്‍, ആറ്റത്തിലെ എലക്ട്രിക് ഓസിലേറ്റേഴ്സിനു്‌ എലക്ട്രോമാഗ്നെറ്റിക്‌ എനര്‍ജി ചെറിയ ചെറിയ “കഷണങ്ങളായി” (ക്വാണ്ടം) മാത്രമേ പുറത്തുവിടാനോ, സ്വീകരിക്കാനോ കഴിയുകയുള്ളു. മറ്റു് വാക്കുകളില്‍: എനര്‍ജി അനന്തമായി വിഭജിക്കാവുന്ന ഒന്നല്ല, അതിനെ “അന്തമായ”, അഥവാ നിശ്ചിത മൂല്യമുള്ള കഷണങ്ങളായി മാത്രമേ വിഭജിക്കാനാവൂ. അതിനിടയിലുള്ള ഒരു മൂല്യം സാദ്ധ്യമല്ല. ഈ തത്വത്തിന്റെ അടിസ്ഥാനത്തില്‍, അള്‍ട്രാവയലറ്റ് കറ്റാസ്റ്റ്രൊഫിക്കു് തൃപ്തികരമായ വിശദീകരണം നല്‍കാന്‍ കഴിഞ്ഞു. വളരെ ഉയര്‍ന്ന എനര്‍ജി ഉണ്ടെങ്കിലേ ഉയര്‍ന്ന ഫ്രീക്വന്‍സിയില്‍ റേഡിയേഷന്‍ സംഭവിക്കൂ. ഒരു നിശ്ചിത ഊഷ്മാവില്‍, ചുരുക്കം ഓസിലേറ്റേഴ്സിനു്‌ മാത്രമേ അതിനുള്ള എനര്‍ജി ഉണ്ടാവൂ എന്നതിനാല്‍ അത്തരം ഫ്രീക്വന്‍സിയില്‍ റേഡിയേഷന്റെ അളവു് കുറയുന്നു. കുറഞ്ഞ ഫ്രീക്വന്‍സിയില്‍ ഓസിലേറ്റേഴ്സിന്റെ എനര്‍ജി കുറവായിരിക്കുമെന്നതിനാലും റേഡിയേഷന്‍ കുറയുന്നു. ഈ പ്രശ്നങ്ങള്‍ക്കു് മുഴുവന്‍ കാരണക്കാരനായ ബ്ലാക്ക് ബോഡി റേഡിയേഷന്റെ എനര്‍ജി ഡിസ്ട്രിബ്യൂഷന്‍ ഗ്രാഫിലെ മാക്സിമത്തെ പ്രതിനിധീകരിക്കുന്ന ഇടത്തരം ഫ്രീക്വന്‍സി മേഖലയില്‍ ആവശ്യത്തിനു് എനര്‍ജി ഉള്ള ധാരാളം ഓസിലേറ്റേഴ്സ്‌ ഉണ്ടെന്നതിനാല്‍, അവയുടെ എനര്‍ജിയുടെ ആകെത്തുകയും സ്വാഭാവികമായും കൂടുതലായിരിക്കും. അങ്ങനെ, “അള്‍ട്രാവയലറ്റ് കറ്റാസ്റ്റ്രൊഫി” എന്ന പ്രശ്നം പരിഹരിക്കപ്പെട്ടു.

തരംഗവും കണികകള്‍ തന്നെ!

മാക്സ് പ്ലാങ്ക് “പഴയ പള്ളിക്കൂടത്തിന്റെ” പ്രതിനിധി ആയിരുന്നു. തന്റെ വിപ്ലവകരമായ കണ്ടെത്തലിനെപ്പോലും പഴയ തൊഴുത്തില്‍ എങ്ങനെ ഒതുക്കിക്കെട്ടാം എന്നതിലായിരുന്നു അദ്ദേഹത്തിനു് കൂടുതല്‍ താത്പര്യം. പ്ലാങ്ക്‌ കണ്ടെത്തിയ ക്വാണ്ടം തിയറി മാറ്ററിനെ, അഥവാ ആറ്റത്തിനെ മാത്രം സംബന്ധിക്കുന്നതായിരുന്നു. എന്‍‌ട്രോപ്പി വര്‍ദ്ധനവു് ഒരു സനാതനസത്യമായി മനസ്സിലാക്കപ്പെടരുതെന്ന, പ്ലാങ്കിന്റെ “ശത്രു” ആയിരുന്ന ബോള്‍ട്സ്‌മാന്റെ നിലപാടിനെ അന്തിമമായി ശരിവയ്ക്കുന്നതായിരുന്നു അതു്. ക്ലാസിക്കല്‍ ഫിസിക്സില്‍ ഇളകാതെ വേരുറപ്പിച്ചിരുന്ന പ്ലാങ്ക്‌ തന്റെ പുതിയ തിയറി വഴി രൂപമെടുത്ത പുതിയ ലോകത്തിലെ പല പ്രതിഭാസങ്ങളും ന്യൂട്ടോണിയന്‍ മെക്കാനിക്സില്‍ അധിഷ്ഠിതമായ തത്വങ്ങള്‍ കൊണ്ടു് പരിഹരിക്കാവുന്നതല്ല എന്നു് തിരിച്ചറിയാന്‍ ശ്രമിച്ചില്ല എന്നതാണു് സത്യം. അതു് ഐന്‍സ്റ്റൈന്‍ അടക്കമുള്ള ചില യുവ ശാസ്ത്രജ്ഞരുടെ ജോലിയായി അവശേഷിച്ചു. 1900-ത്തില്‍ ഐന്‍സ്റ്റൈനു് 21 വയസ്സായിരുന്നു. മലയാളികളായ നമ്മളൊക്കെ സിനിമാനടീനടന്മാരുടെ ഫാന്‍ ക്ലബ്ബുകള്‍ രൂപീകരിക്കാനോ, യൂണിയന്‍ നേതാക്കളുടെ ആഹ്വാനം അനുസരിച്ചു് ഹര്‍ത്താല്‍ ആചരിക്കാനോ ഒക്കെ ഓടിനടക്കുന്ന പ്രായം.

പ്രകാശം ലോഹത്തില്‍ പതിക്കുമ്പോള്‍ കാതോഡ് റെയ്സ്, അഥവാ എലക്ട്രോണ്‍സ്‌ റേഡിയേറ്റ്‌ ചെയ്യപ്പെടുമെന്നു് ഫിലിപ് ലെനാര്‍ഡ് എന്ന ശാസ്ത്രജ്ഞന്‍ 1899-ല്‍ തന്നെ കണ്ടുപിടിച്ചിരുന്നു. ലോഹത്തില്‍ പതിക്കുന്ന പ്രകാശത്തിന്റെ ഇന്റെന്‍സിറ്റി അങ്ങനെ രൂപമെടുക്കുന്ന കണികകളുടെ എണ്ണത്തെ ബാധിക്കുമെങ്കിലും, അതിന്റെ തരംഗദൈര്‍ഘ്യമാണു് അവയുടെ വേഗതയ്ക്കു് (എനര്‍ജിക്കു്) നിദാനം എന്നും അദ്ദേഹം തെളിയിച്ചിരുന്നു. ഐന്‍സ്റ്റൈന്‍ സാധാരണ അറിയപ്പെടുന്നതു് റിലേറ്റിവിറ്റി തിയറിയുടെ പേരില്‍ ആണെങ്കിലും, അദ്ദേഹത്തിനു് നോബല്‍ പ്രൈസ്‌ ലഭിച്ചതു് ഫോട്ടോഎലക്ട്രിക് എഫെക്റ്റിനെപ്പറ്റിയുള്ള പഠനങ്ങള്‍ക്കായിരുന്നു. പ്ലാങ്കിന്റെ ഇക്വേഷനും, ലെനാര്‍ഡിന്റെ കണ്ടുപിടുത്തവുമായിരുന്നു ഐന്‍സ്റ്റൈന്റെ പഠനങ്ങളുടെ ആധാരം. പ്ലാങ്കിനെപ്പോലെ, ക്വാണ്ടം തിയറിയെ റേഡിയേറ്റ്‌ ചെയ്യപ്പെടുന്ന പാര്‍ട്ടിക്കിളില്‍ ഒതുക്കാതെ, അതുവരെ തരംഗങ്ങള്‍ എന്നു് ധരിച്ചിരുന്ന റേഡിയേഷന്‍ തന്നെ ക്വാണ്ടങ്ങള്‍ ആയി വിഭജിക്കപ്പെടാന്‍ കഴിയുന്നവയാണെന്ന വിപ്ലവകരമായ ആശയമാണു് ഐന്‍സ്റ്റൈന്‍ മുന്നോട്ടു് വച്ചതു്.

Planck – blackbody radiation:
E = hν (E = Energy of emitted particle, h = Planck’s constant, ν = frequency of the particle, ν എന്നതു് Greek letter nu, (h-യ്ക്കു് പകരം h/2π = ℏ (h-bar or Dirac h)-യും ഉപയോഗത്തിലുണ്ടു്.)

Einstein – corpuscular theory of light (photon as particle of light):
E = hf (E = Energy of a photon, h = Planck’s constant, f = frequency of light.

പക്ഷേ, f = c/λ ആയതിനാല്‍, E = hc/λ (c = velocity of light, λ (Greek letter lambda) = wavelength of light. റേഡിയേഷന്റെ ക്വാണ്ടം ആയ ഫോട്ടോണിന്റെ എനര്‍ജി കണക്കുകൂട്ടാന്‍ ആവശ്യമായ ഇക്വേഷന്‍.

ഐന്‍സ്റ്റെന്റെ സ്പെഷല്‍ തിയറി ഓഫ് റിലേറ്റിവിറ്റിയില്‍ മാറ്ററിനെയും റേഡിയേഷനേയും തമ്മില്‍ ബന്ധിപ്പിക്കുന്ന ഒരു സമവാക്യമുണ്ടു്. അതിന്റെ ലാളിത്യം മൂലം ആര്‍ക്കും പാടിനടക്കാവുന്ന ഒന്നാണതു്. E = mc². ഇതു് കേള്‍ക്കാത്ത സാമാന്യവിദ്യാഭ്യാസമുള്ളവര്‍ ഉണ്ടെന്നു് തോന്നുന്നില്ല. ഈ മാസ്-എനര്‍ജി റിലേഷനിലെ  E = energy, m = mass, c = velocity of light. ആദ്യകാലപ്രപഞ്ചത്തിലെ മാറ്റര്‍-റേഡിയേഷന്‍-ഇന്ററാക്ഷന്‍ പരിശോധിക്കുമ്പോള്‍, അറ്റോമിക് പാര്‍ട്ടിക്കിള്‍സിന്റെ എനര്‍ജി തിട്ടപ്പെടുത്താന്‍ ആവശ്യമായ സമവാക്യം.

തെര്‍മോഡൈനാമിക് ഇക്വിലിബ്രിയം അവസ്ഥയില്‍ ആയിരിക്കുന്ന ഒരു വ്യവസ്ഥയുടെ പഠനത്തിനു് ശാസ്ത്രം ഉപയോഗിക്കുന്ന പ്രധാന ഗണിതശാസ്ത്രപണിയായുധം സ്റ്റാറ്റിസ്റ്റിക്കല്‍ മെക്കാനിക്ക്സ്‌ ആണു്. പെന്‍സിയസ്, വില്‍സണ്‍ എന്നിവര്‍ സ്വീകരിച്ച മൈക്രോവേവ്‌ ബാക്ക്‌ ഗ്രൗണ്ട്‌ റേഡിയേഷന്‍, പ്രപഞ്ചത്തിലെ മാറ്ററും റേഡിയേഷനും താത്വികമായെങ്കിലും തെര്‍മോഡൈനാമിക്‌ ഇക്വിലിബ്രിയത്തിലായിരിക്കാന്‍ മാത്രം ഉയര്‍ന്ന ടെമ്പറേച്ചറായ 3000 ഡിഗ്രി കെല്‍വിന്‍ നിലനിന്നിരുന്ന ആരംഭനിമിഷങ്ങളില്‍ രൂപമെടുത്തതായിരിക്കണമെന്നു് ശാസ്ത്രജ്ഞര്‍ വിശ്വസിക്കുന്നു. അതായതു്, അവര്‍ എക്സെസ് റേഡിയോ നോയിസ് ആയി കണക്കാക്കിയ ആ സിഗ്നല്‍ നമുക്കു് ഇതുവരെ കണ്ടെത്താന്‍ കഴിഞ്ഞതില്‍ ഏറ്റവും അകലെയുള്ള ഗാലക്സിയില്‍ നിന്നും പ്രകാശം പുറപ്പെടുന്നതിനും എത്രയോ കോടി വര്‍ഷങ്ങള്‍ക്കു് മുന്‍പു് പ്രപഞ്ചത്തിന്റെ അഗാധതകളില്‍ നിന്നും “മനുഷ്യനെ തേടി” യാത്രയാരംഭിച്ച ഒരു എലെക്ട്രോമാഗ്നെറ്റിക് റേഡിയേഷന്‍ ആയിരുന്നു.

(തുടരും)

 
 

മുദ്രകള്‍: , ,

8 responses to “ബിഗ്-ബാങ് – 2

  1. ഗുപ്തന്‍

    ജൂലൈ 12, 2008 at 22:46

    Great! Thank You

     
  2. സി. കെ. ബാബു

    ജൂലൈ 13, 2008 at 08:09

    നന്ദി, ഗുപ്തന്‍.

     
  3. കാവലാന്‍

    ജൂലൈ 13, 2008 at 12:16

    ക്ലാസ്റൂമുകളില്‍ ഉറക്കത്തിന്റെ മൊത്തക്കച്ചവടം സ്വന്തമാക്കിയ മേഖലകളെക്കുറിച്ച് സീകെ എഴുതുമ്പോള്‍ ആകാംഷയോടെ വായിക്കാന്‍ കഴിയുന്നു.
    തുടരുക…..ഭാവുകങ്ങള്‍.

     
  4. സി. കെ. ബാബു

    ജൂലൈ 13, 2008 at 13:57

    പഠിക്കാന്‍ വേണ്ടി പഠിക്കുമ്പോള്‍ ഉറങ്ങിയിരിക്കും.

    അറിയാന്‍ വേണ്ടി പഠിക്കുമ്പോള്‍ ഉണര്‍ന്നിരിക്കും!

    പ്രാസം തിരിഞ്ഞിരിക്കാതെ, തികഞ്ഞിരിക്കാന്‍:

    പഠിക്കാന്‍ വേണ്ടി ഉണരുമ്പോള്‍ അറിഞ്ഞിരിക്കും!

    (ക്ലാസ്‌റൂമുകളില്‍ ഉറങ്ങാം! ടീച്ചര്‍ പിടിച്ചാല്‍,‍ പഠിപ്പിച്ച കാര്യങ്ങളെപ്പറ്റി കണ്ണടച്ചിരുന്നു് അഗാധമായി ചിന്തിക്കുകയായിരുന്നു എന്നു് പറഞ്ഞാല്‍ മതി. പക്ഷേ അസംബ്ലിയില്‍ മുദ്രാവാക്യങ്ങളുടെ ബഹളം കാരണം ഉറങ്ങാന്‍ പോലും പറ്റുന്നില്ലെന്നാണു് ഇരുന്നിരുന്നു് ഇരിക്കുന്നിടത്തു് തഴമ്പും, തഴമ്പില്‍ വ്രണവുമായ ചില വന്ദ്യവയോധികസാമാജികരുടെ നിത്യരോദനം! അതാരുകേള്‍ക്കാന്‍?) 🙂

     
  5. ശ്രീവല്ലഭന്‍.

    ജൂലൈ 13, 2008 at 16:42

    തലയില്‍ കയറാത്തതൊന്നും വായിക്കില്ല എന്ന് ശപഥം ചെയ്തിരിക്കുവാ. എന്നാലും വായിച്ചു.

     
  6. സി. കെ. ബാബു

    ജൂലൈ 13, 2008 at 18:33

    ശ്രീവല്ലഭന്‍,

    എന്നിട്ടു് തലയില്‍ കയറിയില്ല എന്നൊന്നും വെറുതെ പറഞ്ഞേക്കല്ലേ! ശുദ്ധഗണിതത്തിന്റെ ഗുരുനാഥനായ Leonhard Euler ജനിച്ച നാട്ടില്‍, മൂന്നു് ഭാഷകള്‍ സംസാരിച്ചിട്ടും വാച്ചുകള്‍ കൃത്യസമയം കാണിക്കാന്‍ മടിക്കാത്ത സ്വിറ്റ്സര്‍ലണ്ടില്‍ (‘Swiss precision watch’!) ജീവിക്കുന്നവര്‍ക്കു് മനസ്സിലാവാത്തതൊന്നും ഞാന്‍ എഴുതിയിട്ടില്ല. 🙂

     
  7. ബ്രിനോജ്‌

    ജൂലൈ 15, 2008 at 13:06

    thank you…please continue.

     
  8. സി. കെ. ബാബു

    ജൂലൈ 16, 2008 at 08:38

    ബ്രിനോജ്,
    വായിച്ചതിനു് എന്റെയും നന്ദി.

     

ഒരു മറുപടി കൊടുക്കുക

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  മാറ്റുക )

Google+ photo

You are commenting using your Google+ account. Log Out /  മാറ്റുക )

Twitter picture

You are commenting using your Twitter account. Log Out /  മാറ്റുക )

Facebook photo

You are commenting using your Facebook account. Log Out /  മാറ്റുക )

w

 
%d bloggers like this: